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Spacetimes in Which the Ricci Equations Characterize
the Riemann Tensor

S. Brian Edgar’
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It has recently been asked whether a fourth-order tensor K with all the algebraic
symmetries of a Riemann tensor, and which satisfies the Ricci equations (with
covariant derivative constructed from the metric g in the usual way), is always
equal to the Riemann tensor R of the metric g; and a positive answer has been
given for a generic tensor K in any nonflat 4-dimensional spacetime. In this paper
it is shown that the result is also true in a generic 4-dimensional spacetime for
any nontrivial tensor K. In addition, those special spacetimes where the result
fails are given explicitly in terms of the Petrov types of their Weyl and Plebanski
tensors.

1. INTRODUCTION

A Riemann tensor R, defined in terms of a metric g, in the usual
way identically satisfies

Rabcd= _Rabdc (1a)
R pea)=0 (1b)
gaiR ibcd= —ﬁgbiR iacd ( 1 C)

and also the Ricci equations,
2R beer}= —RpeaR % ics+ R%icaR bes+ R piaR cor + R%eiR’ s (VA

where the covariant derivative is defined in terms of the Lorentz metric g,
which is used to raise and lower indices in the usual way.
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Recently it has been asked under which circumstances a “curvature
candidate” K“,., satisfying

K %ea=—K pa (3a)
Ka[bcd] =0 (3b)
gaiI(ibcd= _gbiKiacd (3C)

and satisfying the Ricci-type equation
2K peiter1= =K' peaK  iep+ K icaK bor+ K piaK cor + K peiK ' aer 4

is equal to the Riemann tensor R, of the metric (Rendall, 1989a,b).

This question has been answered in terms of the type of the curvature
candidate K., in a 4-dimensional spacetime M. It has been shown that
such a curvature candidate is indeed the Riemann tensor of the metric g,
for a very large class of curvature candidates (Edgar, 1990), but some very
specialized counter examples have been found (Rendall, 19895). However,
it has also been shown that this result is true for a “generic” curvature
candidate, i.e., for an open dense set of curvature candidates in the Whitney
C” topology (Rendall, 19895 ; Edgar, 1990).

We now wish to find whether we can make a similar statement for
generic spacetimes. We use Rendall’s definition of a generic spacetime as
being a spacetime M on which there exists an open dense subset of the space
of all Lorentz metrics on M with Whitney C* topology (Rendall, 1988a).
The first step is to find out explicitly for which spacetimes (defined as a class
of Riemann tensors) the Ricci equations are sufficient to characterize the
Riemann tensor. The next step is to determine whether there exists an open
dense subset of Lorentz metrics in a Whitney C* topology which contains
only Riemann tensors of this class.

Edgar (1990) compared equation (2) to the usual Ricci equation for
K ed,

2K % beater1 = —K'peaR Yot K caR ibef+ KR icef+ K bR dey &)
resulting in the algebraic constraint equation

0=K ibch aief— K caP ibef"' K piaP icef_ K%.P idef (6)
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where
Pa=R%ca— Kpea (7)

The set of equations (7) was split into one subset containing only IO(,,,, (the
trace-free “Ricci part”),

I(){icP ibef+ Io(ibP icef= 0 (8)
and one subset containing only {.(' “yea (the trace-free “Weyl part™),
0= 10< "pedP ier— 10< *ieadP per— Io< iaP cor— Io< “beiP der &)

Then we applied classification schemes to IO( “veq (and K ) and for each class
we substituted the respective canonical form into (9) [and (8)]. For some
classes, P“,.,; was found to be identically zero, and so K., and R“;., are
identical; for other classes, where P%,.; was not identically zero, we were
able to obtain some information about how much X°,.; and R?,., differed.

[We note that the scalar part K of the curvature candidate K“,., does
not enter our considerations since it does not occur in (8) or (9). Therefore
a curvature candidate K., whose only nonzero part is the scalar K puts
absolutely no constraints on the Riemann tensor R%...]

In this paper we have completed this analysis by taking all possible
classes of K,.;and K, and for those classes where P, is not identically
zero we found out as much as we could about P“,.; and hence about
R%.4. This information is given in Tables I-III and discussed in Sections 2
and 3.

In Section 4 we discuss the generic nature of these results and confirm
that for generic spacetimes, nontrivial curvature candidates which satisfy the
Ricci equations are Riemann tensors.

2. THE TABLES

As in Edgar (1990), we use the well-known Petrov (1969) classifi-
cation scheme, first for K%,,, and later for {)’“bcd and IOQ”M. Also, as in
Edgar (1990), we classify Io<"”’ and later fab and {)(a,, by means of a
Petrov classification of their respective Plebanski tensors %, &, and #
(Plebanski, 1964). The Plebanski tensor and associated classification scheme
have been written in NP notation (Mclntosh et al., 1981) and have already
proved useful in investigating algebraic constraints on the Riemann tensor
(MclIntosh and Halford, 1982). We use the standard NP symbols (Newman
and Penrose, 1962) ¥y, ¥;, . .., ®g, Po1, . . . , A for the tetrad components
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of R bed's o"”’ and R, respectively; analogous symbols ¥, ¥, ..., ®g,
(I)O. , ..., A for the tetrad components of P4, Py, and P, respectively;
and ‘I’o, ‘Pl, vev, @go, Doy,...,A for the tetrad’ components of K%.4,
I()(,,,,, and K, respectively. 0

The results are presented in Tables I-III. In Table I we present the
restrictions which (9) imposes on P9, for all possible Petrov types of
K sca- In Table II we present the restrictions which (8) imposes on P*,, for
all possible Petrov types of »#". In Table III we combine the results from
Tables I and II to list those spaces where R“;,, is not completely determined
by K“4.s and to give what informatjon can be deduced about these spaces.

The following points should be noted about the tables:

(a) The classification of the Plebanski tensor in NP notation according
to Petrov type, as quoted here from Mclntosh et al. (1981), corresponds
directly to the classification by Segré characteristics (Hall, 1976) and to the
Plebanski (1964) scheme. We have not added these extra columns since they
are listed in McIntosh et al. (1981).

(b) For those types of K sea (and A7) where (9) [and (8)] have only
the trivial solution for P94, denoted by a dash in Table I (and II), R, is
equivalent to K“., and this is denoted by P =¥ (®=®) in the last three
columns for each of these types in Table I (and II).

(c) In Table II the information in the first six columns is taken directly
from Table I in McIntosh and Halford (1982). [Equation (8), which imposes
constraints on the tensor P“,,; by the symmetric second-order trace-free
tensor K,;, has exactly the same form as equation

xicR ibef+ xibR icef= 0 ( 10)

considered in McIntosh and Halford (1982). There the constraints imposed
on R, by the symmetric second-order tensor x,, were considered for the
various classes of the Plebanski tensor #,—the Plebanski tensor formed
from the trace-free part of x,, as in equation (10). The results in Table I in
reference McIntosh and Halford (1982) can be immediately applied to equa-
tion (8) in this paper.] However, there are a few small changes—one minor
correction, and a refinement of classification for the Petrov I classes using
the new subclasses introduced in MclIntosh and Arianrhood (1990); the
latter are significant when we discuss the generic nature of our results in
Section 4. When the Petrov type of 5" is 0., the Petrov type of # is D—as
can be confirmed by substituting the components of &5 in the Plebanski
tensor components in (A4) of the Appendix. When the Petrov types of A
are O, and O,;, the Petrov types of 2 and P sea TeSpectively belong to a
distinct subclass I(M™*) of Petrov type I. This subclass of Petrov type 1
corresponds to the expression M= (I°/J*>—6) formed from the algebraic
invariants of the respective tensor being real. [In fact this subclass, which
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we have called I(M™), is really the union of the two subclasses /(M) and
I(M™) in the classification scheme discussed in MclIntosh and Arianrhood
(1990).]

(d) For each of those types of IO('”bcd (and A") where equations (9) [and
(8)] have a nontrivial solution for P“;,, all undetermined Y, &5, and A
are listed in column 3 of Table I (and II). The Petrov types of {””bcd and &
listed in columns 5 and 6, respectively, of Table 1 (and IT) are the most
general possible—assuming all undetermined ¥, ® 5, and A in column 3
of Table I (and IT) are nonzero and ¥, and @ 4 have no additional relations
between them. For each of these types in Table I and most of these types in
Table II the most general Petrov types of P sea and Z are the only types—
except for P"bcd and 2 being identically zero. However, in Table 1I, when
A is Petrov type O, clearly some of the undetermined ¥, &5, and A in
column 3 could be chosen zero or with additional relations between them,
permitting nontrivial subtypes of P“,., and £; this feature is denoted by
I(M™*),...and II, . . . in columns 5 and 6 of Table II.

(e) All tables list the dimension of the bivector space which spans the
curvature 2-form ©“, denoted by

®"b=%P"bcd95/\ 04 11
where
ds*=g,,0°60" (12)

The ©7, are written out explicitly, in NP notation, in terms of a basis in
equations (5.4) of Mclntosh and Halford (1982); the dimension can easily
be found by substitution in these equations.

(f) For each of those types of K"bcd (and A") where equation (9) [and
(8)] has a nontrivial solution for P* ,,c,,, information on {)i sea and 2 is listed
in columns 7-9 of Table I (and II). In Table 1 the undetermined values of
W, listed in column 7 are obtained by adding each ¥, to the corresponding
W, listed respectively in columns 2 and 3 ; therefore the most general Petrov
type of R, can easily be determined in each of the two nontrivial cases,
and is listed in column 8; but no information is known directly about #
(until 2" is known) and this is denoted by question marks in column 9. In
Table 11 the undetermined values of ® 45 listed in column 8 are obtained by
adding each @5 to the corresponding & 5 listed respectively in columns 2
and 3; therefore the most general Petrov type of # can be determined and
is listed in column 8, but no information is known directly about R, (until
K*®;.q4 is known) and this is denoted by question marks in column 9. The
“most general” Petrov types of {)Q“bcd listed in column 8 of Table I are the
only possible types (except {)Q”b[d identically zero, when the ¥ ’s and ¥ s
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“cancel”), but almost all of the “most general” Petrov types of % listed
in column 8 of Table II have nontrivial subtypes; these can be obtained by
choosing the permitted nontrivial subtypes (where possible) or trivial
subtypes of {))al’.”d and/or 2 or by choosing some of the ®,5’s to cancel
corresponding @ 45’s.

(g) The choice of tetrad which gives the canonical form for a particular
Petrov type of I()(”bcd is not of course the same choice of tetrad which puts a
particular Petrov type of X into canonical form. Therefore, in order to
decide which nontrivial solutions of P“,, in Table I are compatible with
nonirivial solutions of P9, in Table II we cannot compare directly the
undetermined ¥,, @5, and A in column 3 of the two tables, but rather
compare their invariant Petrov types from the two tables, and from this we
build up in Table III the complete picture of those classes of K., which
permit nontrivial solutions of P%,,. For the same reason, for these classes,
when we are trying to find information on the Riemann tensor we cannot
combine directly the results obtained for W4 in column 7 of Table I with the
results obtained for @,z and A in column 7 of Table II—rather, we must
use the Petrov types to obtain the information in columns 6 and 7 of Table
III. We demonstrate how we construct Table II1 in the Appendix.

(h) The Petrov types of R »ea aNd Z listed in columns 6 and 7 of Table
III are the most general, and in most cases nontrivial subtypes can be
found, as is clear from the discussion in the Appendix.

(i) In Table IHI class O* means types O,1, Ou, 0. The O, type—
which is when all ®,5 are zero, i.e., K. =0—is listed separately since for
this class (with only the scalar A nonzero) K., imposes no conditions on
P?,.4 nor therefore on R, ;.

3. SUMMARY OF RESULTS

We highlight the following results from Table 1.
(i) Only the trivial solution of (6) [equivalently (8) and (9)] is possible
when either of the following conditions on K, holds:

(a) IO("’,,cd is Petrov type I, I1, or III.

(b) & is Petrov type 1, II, or Il

(c) {)("bcd is Petrov type D and ¢ is Petrov type N.
(D IO("M is Petrov type N and £ is Petrov type D.

This result was given in Edgar (1990).

(ii) Nontrivial solutions of (6) only occur when both Io<a"“’ and . are
degenerate Petrov classes (i.e., D, N, or O). However, for some of these cases
K*%,.s may be of rank 6—the maximal rank. This can easily be seen by
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substituting these classes of K%, into the equivalent equation to (5.4) in
Mclntosh and Halford (1982), for K%.,4.

(iii) When nontrivial solutions of (6) occur the tensor P%,,, which
measures the difference between K., and R4, has dimension at most 3.
Both {)"'bcd and 2 are degenerate Petrov classes [i.e., I(M*), II, D, N, or O].

(iv) Nontrivial solutions of (6) only occur when both R sea @and 2 are
degenerate Petrov classes [i.e., (M*), II, D, N, or O]. For some of these
cases R%.; may be of rank 6—the maximal rank. However, we note that a
spacetime with a high-ranking Riemann tensor [and R“;.;and £ both Petrov
type I(M™)] only permits nontrivial solutions in oneovery special situation—
when both K bea and A~ are type O.

So it is only in very special situations that the Ricci equations are
insufficient to characterize a Riemann tensor; it is only when the K“,., and
A parts of K%, are both degenerate, or alternatively when a spacetime has
a Riemann tensor R, which has both {){"bcd and # parts degenerate. Of
course in the latter case we are assuming that the curvature candidate K4
has more structure than just its scalar curvature K, since we already pointed
out in Section 1 that such a curvature candidate puts no constraint on R%,.,.

4. GENERIC NATURE OF RESULTS

It has been noted that it is only for spacetimes whose Riemann tensors
are very specialized that the Ricci equations fail to characterize the Riemann
tensor. So we would suspect that this statement can formally be made for
‘““generic”’ spacetimes.

Referring to Rendall (1988a), we find from Proposition 6 :3 that there
exists an open dense set of C” Lorentz metrics on M with Whitney C” (r>3)
topology whose Weyl tensors are Petrov type I at all points of the spacetime
M, except possibly on a two-dimensional regular submanifold of M, where
the type is II, and isolated points where it is I/] or D.

When we apply this proposition to Table III we can conclude that for
a generic spacetime, a curvature candidate K%, .,—with at least one of
IO( “rca and A~ not Petrov type O—which satisfies the Ricci equations is equal
to a Riemann tensor at all points of M (except perhaps at isolated points.)

However, we can even strengthen this result by weakening the condition
on K“,,. First we need to strengthen Proposition 6 :3 by replacing Petrov
type I with that general subclass of Petrov type I which excludes Petrov type
I(M*); this subclass, which corresponds to M being complex, will be labeled
Petrov type I(MF). So we need to construct a slightly finer stratification
where Petrov type I is subdivided into types I(M*) and I(M®), but the rest
of the stratification is unchanged. By the same type of argument as used by
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Rendall (1987) to establish Proposition 6 :3,” we can show that there does
exist an open dense subset of C" Lorentz metrics on M whose Weyl tensors
are Petrov type I(M©); of course there is the possibility that it can reduce
to Petrov type /(M*) on a submanifold.

Therefore we can conclude that for a generic spacetime, a curvature
candidate K“,.,—with at least one of §' “ea and A nonzero—which satisfies
the Ricci equations is equal to a Riemann tensor (except possibily on some
submanifolds of M).

APPENDIX
Ig “sca Petrov Type D

From Table I it follows immediately that P"bcd is type D, 2 is type D,3,
and A #0.

(@) If A is type D, then it follows immediately from Table II that
{)’”bvd is type D, 2 is Type D.s, and A #0. This result coincides exactly with
the result given above from Table 1. So for this class of curvature candidate
R4 differs from K%,,. However, from Table I we also note that R%,, is
type D and from Table 1I, & is type D, i.e., for this class of curvature
candidate although R, may differ from K*;,, it has the same Petrov types,
and the scalars K and R may differ.

(b) If A is type N, then it follows immediately from Table II that
P sed 18 type N, 2 is type O, and A =0. These results can only be reconciled
with those given above from Table I when both 1: vea and 2 as well as A
are identically zero, i.e., for this class of curvature candidate K, is identical
to Rabcd.

(¢) If A is type O, then it follows immediately from Table II that
P peaiS type I,...or II,... ,Pistype I,...or II,..., and A #0. There
will be a nontrmal 1ntersect10n between the results glven above from Table
I and these results from Table IT provided that, in the latter, type D is a
permitted subtype for 1(’)’“,,6,, and type D,; is a permitted subtype for #. Of
course the tetrad frame in which P, is given in Table I (the usual canonical
tetrad frame associated with the different Petrov types of A~ given in Table
11, so a direct comparison between column 3 in each table is not sufficient;
however, it is easy to deduce that the required subtypes do exist, although
we cannot immediately obtain their most general form in the tetrad in which
A has its canonical form. So when K bea 18 type D and A is type O, R4
differs from K%.,.

*I am grateful to Dr. Rendall for help on this point.
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From Table I we also note that R"bcd is type D and from Table II that
A is type I, . . .. However, we can be more precise in our prediction for £#
when we make P, in Table IT compatible with P9, ., in Table 1. If we
transform P%,, given in Table I into an arbitrary tetrad frame, the Ps
have the form (Ludwig, 1986)

¥o=6a"Y
¥, =3ab(ad+ bc)¥
¥, =(d’d” + b** + dabed )P (A1)

¥,=3cd(ad+ bc)¥
¥,=652d"¥
and the & ,5’s have the form
6)00 = 4abﬁ(f)
&y, =2ab(ad+ bc)d
&)02 = 4ab;c;'(f)
&, = (ad+ bc)(ad+be)d
®&,,=2cd(ad+ bc)d
6)22 = 4cd22’d3

(A2)

where both ¥ and ® are real, corresponding to the ¥, and @,,, respectively
in Table I. Substituting in column 3 of Table II gives the conditions under
which these are consistent with the form of the undetermined ¥ s and @ s
when 1 is type O,;, O,,, or O,, respectively. (Of course, when ¢ is type
O, there is always consistency.)

When ¢ is type O, the above equations are found to be consistent
providing

ab=ab
cd=cd

(ad+ bc)=(ad+ bc)
20=3%

(A3)

The @5 are found by adding the @, in column 2 of Table II to the ® 4,
given in (A2) with the conditions (A3) substituted. The components of the
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Plebanski tensor # can now be written out, using McIntosh et al. (1981),
Zo0= 3(Doe®o2 — BF)
==2a"b*(®*+ DD )
X177 $(Do®12 + @ 1oDoz — 200, D)
=—ab(ab+ cd)(®*+ OD,,)
F2=15(Poo®@2— 4DJ + 4B (@15 — 20, Doy + Do, D50)
—(dPd*+ B’ + dabed ) (&% + BB, )
23= §(@p D10+ @Dy — 20, D)
= —cd(ad+bo)(D*+ 0D ,))
1= 2(D2@s— D)
=-28dX(*+ DP,,)

(Ad)

By comparing these with (A1), it is obvious that £ is also Petrov type D.

When a similar analysis is applied to the other two cases—when ¢ is
type O, and O,, respectively—it is found for these cases also that £ is
Petrov type D.

So for this class of curvature candidate if K, ., and R, differ, they
are the same type; if ¢ and £ differ, # is at most of type D and the scalars
K and R can differ.

Therefore we have obtained the first section of Table III.

{)( “sca Petrov Type N

From Table I it follows immediately that P"bcd is type N, £ is type O,
and A=0.

(a) If A" is type D, then it follows immediately from Table II that
](’)’ bea 18 type D, 2 is type D3, and A #0. These results can only be reconciled
with those from Table I in the previous paragraph when P veds P, and A
are all identically zero, i.e., for this class of curvature candidate K bed 18
identical to R%.4.

(b) If A" is type N, then it follows immediately from Table II that
{)"',,Cd is type N, 2 is type O,, and A=0. This result coincides exactly with
the result given above from Table 1. So for this class of curvature candidate
R, differs from K“,.;. However, from Table 1 we also note that R bed 18
type N and from Table II, & is type N, i.e., for this class of curvature
candidate, although R“, , may differ from K "bcd, it has the same Petrov types
and the scalars K and R are equal.
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(c) If A is type O, then it follows immediately from Table II that
P veaistypel,...orIl,. .. Pistypel,...orIl, ..., and A #0. There will
be a nontrivial 1ntersect10n for Py between the results given from Table I
at the beginning of this subsection and these results from Table II provided
that, in the latter, type N is a permitted subtype for P",,cd and type O, is a
permitted subtype for 2 when A=0. It is easy to deduce that the required
subtypes are permitted—at least when " is type O, O,; (trivially), or Oy—
although we cannot immediately obtain their most general form in the tetrad
in which 27 has its canonical form. So when K “pea 18 type N and ¢ is type
0, R%,., differs from K“,.,.

From Table I we note that, for these types, R",,cd is type N and from
Table II that # is type I,.... However, we can’ be more precise in our
prediction for # by using Table 1 and noting that it is obtained from the
@ ,5’s which are found by adding @, to the type O ® ,5’s (which are not of
course necessarily in canonical form). Such a minor change is easily seen
[by considering explicitly the tetrad components of the Plebanski tensor 2
in (A4)] to ensure that the most general & is type N. So for this class of
curvature candidate if K “pea and {)2"1,6,1 differ, they are the same type; if A
and # differ, # is at most of type N and the scalars K and R are equal.

Therefore we have obtained the middle section of Table IIL

Io( “pca Petrov Type O

When K bea 18 type O, i.e., identically zero, then we can use Table 11
directly, combined with the fact that 5",,01 is identical to {)’”bad So we find
from Table II that the only nontrivial solutions for P, are when ¢ is type
D, N, or O. This enables us to obtain the last three lines of Table II1I. We
have separated out the case when A~ is type O, since for this class both
{.("bcd and IO( « are identically zero.

ACKNOWLEDGMENTS

I am grateful to Dr. Graham Hall for informing me of Rendall’s results.
I also thank Dr. Alan Rendall for supplying preprints of his papers and
copies of parts of his thesis, and for discussions and comments. This work
was supported in part by the Swedish Natural Science Research Council,
contract number F-FU 9427-304.

REFERENCES

Arianrhood, R., and Mclntosh, C. B. G. (1992). Principal null directions of Petrov type 1 Weyl
spinors: Geometry and symmetry, Preprint, Monash University.
Edgar, S. Brian (1990). Journal of Geometry and Physics, T, 191.



Ricci Equations and Riemann Tensor 135

Hall, G. S. (1976). Journal of Physics A: Mathematical and General, 9, 541.

Ludwig, G. (1986). Classical and Quantum Gravity, 3, L141-147.

Mclintosh, C. B. G., and Arianrhood, R. (1990). Classical and Quantum Gravity, T, L213-216.

Mcintosh, C. B. G., Foyster, J., and Lun, A. W.-C. (1981). Journal of Mathematical Physics,
22, 2620-2623.

Mclntosh, C. B. G., and Halford, W. D. (1982). Journal of Mathematical Physics, 23, 436-441.

Newman, E. T., and Penrose, R. (1962). Journal of Mathematical Physics, 3, 566-578.

Petrov, A. Z. (1969). Einstein Spaces, Pergamon Press, Oxford.

Plebanski, J. (1964). Acta Physica Polonica, 26, 963-1020.

Rendall, Alan D. (1987). Ph.D. Thesis, University of Aberdeen.

Rendall, Alan D. (1988a). Journal of Mathematical Physics, 29, 1569.

Rendall, Alan D. (1988b). Classical and Quantum Gravity, 5, 695.

Rendall, Alan D. (1989q). Journal of Geometry and Physics, 6, 160.

Rendall, Alan D. (19895). Describing space-times by their curvature, in Proceedings of the
Conference on Mathematical Relativity, Canberra, 1988 (R. Bartnick, ed.), Australian
National University, pp. 125-136.



