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Spacetimes in Which the Ricci Equations Characterize 
the Riemann Tensor 

S. Brian Edgar 1 
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It has recently been asked whether a fourth-order tensor K with all the algebraic 
symmetries of a Riemann tensor, and which satisfies the Ricci equations (with 
covariant derivative constructed from the metric g in the usual way), is always 
equal to the Riemann tensor R of the metric g; and a positive answer has been 
given for a generic tensor K in any nonflat 4-dimensional spacetime. In this paper 
it is shown that the result is also true in a generic 4-dimensional spacetime for 
any nontrivial tensor K. In addition, those special spacetimes where the result 
fails are given explicitly in terms of the Petrov types of their Weyl and Plebanski 
tensors. 

1. I N T R O D U C T I O N  

A R i e m a n n  tensor Rabcd defined in terms of  a metric  gab in the usual  

way identically satisfies 

R abca = -- R ~bac ( l a )  

R ~ I = 0 (1 b) 

goiR ibcd = --gbiR iocd ( 1 C) 

and  also the Ricci equat ions,  

2 R  abcd;tef] = - R  ibcdR aief'~- R altaR ibef'~- R abidR icef']- R abciR ide f (2) 

where the covar ian t  derivative is defined in terms of  the Lorentz  metric  gob, 
which is used to raise and  lower indices in the usual  way. 
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Recently it has been asked under which circumstances a "curvature 
candidate" K"b~d satisfying 

K"b~a = --K"bac (3a) 

K"tb~a 1 = 0 (3b) 

g,,iKibca = -gbiKi.,a (3c) 

and satisfying the Ricci-type equation 

2Kabca;[ef] = --K~bcdKa~ef + KaicdKibef + K"b~dK~f + KabciKiae f (4) 

is equal to the Riemann tensor R"b~d of the metric (Rendall, 1989a,b). 
This question has been answered in terms of the type of the curvature 

candidate K"bcd in a 4-dimensional spacetime M. It has been shown that 
such a curvature candidate is indeed the Riemann tensor of the metric g,b 
for a very large class of curvature candidates (Edgar, 1990), but some very 
specialized counter examples have been found (Rendall, 1989b). However, 
it has also been shown that this result is true for a "generic" curvature 
candidate, i.e., for an open dense set of curvature candidates in the Whitney 
C ~ topology (Rendall, 1989b; Edgar, 1990). 

We now wish to find whether we can make a similar statement for 
generic spacetimes. We use Rendall's definition of a generic spacetime as 
being a spacetime M on which there exists an open dense subset of the space 
of all Lorentz metrics on M with Whitney C k topology (Rendall, 1988a). 
The first step is to find out explicitly for which spacetimes (defined as a class 
of Riemann tensors) the Ricci equations are sufficient to characterize the 
Riemann tensor. The next step is to determine whether there exists an open 
dense subset of Lorentz metrics in a Whitney C k topology which contains 
only Riemann tensors of this class. 

Edgar (1990) compared equation (2) to the usual Ricci equation for 
g abcd , 

2K"bca;[ef] = --KibcdR aief'4" K"icaR ibef+ KabiaR i~ey+ K~'b~tR ia~f (5) 

resulting in the algebraic constraint equation 

0 =Kit, caPaief - K"icaP ibef-- K"biaP icef-- KabciP iaef (6) 



R i e e i  E q u a t i o n s  a n d  R i e m a n n  T e n s o r  1 2 3  

where 

a __ a a 
P bed-- R bcd-- K bed (7) 

The set of equations (7) was split into one subset containing only K~b (the 
trace-free "Ricci part"), 

K i c P i b e  + K i b e i c e  = 0 ( 8 )  
o ' f  o "f 

and one subset containing only K~bcg (the trace-free "Weyl part"), 

__ i a a i g b i d g  c e f - -  a i 0 -  g bcaP ief-- g i~aP bef-- " ' K bciP def (9) 

Then we applied classification schemes to K"b~d (and K~b) and for each class 
0 0 

we substituted the respective canonical form into (9) [and (8)]. For some 
classes ,  pabc d was found to be identically zero, and so Kab~d and Rabcd are  
identical; for other classes, where P~bcd was not identically zero, we were 
able to obtain some information about howmuch K~bcd and R"bcd differed. 

[We note that the scalar part K of the curvature candidate Kabcd does 
not enter our considerations since it does not occur in (8) or (9). Therefore 
a curvature candidate Kab,d whose only nonzero part is the scalar K puts 
absolutely no constraints on the Riemann t e n s o r  Rabed .] 

In this paper we have completed this analysis by taking all possible 
classes of K"b~a and K~o and for those classes where P~br is not identically 

0 a 
zero we f6und out as much as we could about P b,d and hence about 
R abcd . This information is given in Tables I-III and discussed in Sections 2 
and 3. 

In Section 4 we discuss the generic nature of these results and confirm 
that for generic spacetimes, nontrivial curvature candidates which satisfy the 
Ricci equations are Riemann tensors. 

2. THE TABLES 

As in Edgar (1990), we use the well-known Petrov (1969) classifi- 
cation scheme, first for K"bcd, and later for Pabcd and 0R"bcd. Also, as in 

0 0 
Edgar (1990), we classify K,,b, and later Pob and R,,b by means of a 

�9 . . 0  . 0 . 0 
Petrov classlficahon of their respective PlelSanskl tensors X, #, and 
(Plebanski, 1964). The Plebanski tensor and associated classification scheme 
have been written in NP notation (McIntosh et al., 1981) and have already 
proved useful in investigating algebraic constraints on the Riemann tensor 
(McIntosh and Halford, 1982). We use the standard NP symbols (Newman 
and Penrose, 1962) q%, Wj . . . . .  *o0, ~01 . . . . .  A for the tetrad components 
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of Rabcd, Rab, and R, respectively; analogous symbols ~o, ~'~ . . . .  ~0o, 
^ 0 0 

OoJ . . . . .  /~ for the tetrad components of P"bcd, Pab, and P, respectively; 
~ ~ 0 0 a 

and ~0, WI . . . . .  ~00, ~ 0 1 , . . . ,  ~ for the tetrad components of K bed, 
Kab, and K, respectively. 0 

The results are presented in Tables I-Ill. In Table I we present the 
restrictions which (9) imposes on Pabcd for all possible Petrov types of 
K"b~d. In Table II we present the restrictions which (8) imposes on P%cd for 
~11 possible Petrov types of Jr .  In Table III we combine the results from 
Tables I and II to list those spaces where Rabid is not completely determined 
by K"bcd and to give what information can be deduced about these spaces�9 

The following points should be noted about the tables: 
(a) The classification of the Plebanski tensor in NP notation according 

to Petrov type, as quoted here from Mclntosh et aL (1981), corresponds 
directly to the classification by Segr6 characteristics (Hall, 1976) and to the 
Plebanski (1964) scheme. We have not added these extra columns since they 
are listed in Mclntosh et al. (1981). 

(b) For those types of _K"bcd (and o,~) where (9) [and (8)] have only 
�9 , . U 

the trwlal solution for P"bcd, idenoted by a dash in Table I (and II), R"b~d is 
equivalent to Kab~a and this is denoted by �9 = ~g (~ = ~)  in the last three 
columns for each of these types in Table I (and II). 

(c) In Table II the information in the first six columns is taken directly 
from Table I in Mclntosh and Halford (1982). [Equation (8), which imposes 
constraints on the tensor P"bcd by the symmetric second-order trace-free 
tensor Kob, has exactly the same form as equation 

x i~R ibef'~- x~bR iceS= 0 (1 O) 

considered in Mclntosh and Halford (1982). There the constraints imposed 
on R~b~d by the symmetric second-order tensor X,b were considered for the 
various classes of the Plebanski tensor ~- - - the  Plebanski tensor formed 
from the trace-free part of X,b as in equation (10). The results in Table I in 
reference Mclntosh and Halford (1982) can be immediately applied to equa- 
tion (8) in this paper.] However, there are a few small changes--one minor 
correction, and a refinement of classification for the Petrov I classes using 
the new subclasses introduced in Mclntosh and Arianrhood (1990); the 
latter are significant when we discuss the generic nature of our results in 
Section 4. When the Petrov type of o~ r is 02, the Petrov type of ~ is D as 
can be confirmed by substituting the components of DAB in the Plebanski 
tensor components in (A4) of the Appendix. When the Petrov types of 
are O0~ and 0,2, the Petrov types of ~ and P"b~d respectively belong to a 
distinct subclass I(M ~) of Petrov type L Tl~is subclass of Petrov type I 
corresponds to the expression M =  (I3/J 2-6) formed from the algebraic 
invariants of the respective tensor being real. [In fact this subclass, which 
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we have called I(M~), is really the union of the two subclasses I ( M  § and 
I ( M - )  in the classification scheme discussed in Mclntosh and Arianrhood 
(1990).] 

(d) For each of those types of K"b~a (and Jd) where equations (9) [and 
(8)] have a nontrivial solution for l~b~d, all undetermined ~A, ~AB, and/~ 
are listed in column 3 of Table I (and II). The Petrov types of P"bca and 

�9 0 

listed in columns 5 and 6, respectwely, of Table I (and II) are the most 
general possible--assuming all undetermined ~A, ~AB, and • in column 3 
of Table I (and II) are nonzero and gaA and ~AB have no additional relations 
between them. For each of these types in Table I and most of these types in 
Table II the most general Petrov types of P"b~d and ~ are the only types-- 

a �9 . �9 0 �9 

except for P b~d and 9 a being ldentmally zero�9 However, In Table II, when 
Of is Petrov type O, clearly some of the undetermined WA, qbAB, and/~ in 
column 3 could be chosen zero or with additional relations between them, 
permitting nontrivial subtypes of P~ and ~ ;  this feature is denoted by 
I ( M  :~) . . . .  and I I , . . .  in columns 5 and 6 of Table II. 

(e) All tables list the dimension of the bivector space which spans the 
curvature 2-form | denoted by 

where 

~ a  | ~ a  r t r  

b = ~ l  "bcd u A O  d (11) 

ds 2 =g~bOaO b (12) 

The | are written out explicitly, in NP notation, in terms of a basis in 
equations (5.4) of McIntosh and Halford (1982); the dimension can easily 
be found by substitution in these equations. 

(f) For each of those types of Kabcd (and SU) where equation (9) [and 
a O  . . . .  

(8)] has a nontrivial solution for P bed, mformahon on R ~ and ~t is hsted 
m columns 7-9 of Table I (and o . �9 II). In Table I the undetermined values of 
qJA listed in column 7 are obtained by adding each ~A to the corresponding 
~A listed respectively in columns 2 and 3 ; therefore the most general Petrov 
type of R abed can easily be determined in each of the two nontrivial cases, 

�9 0 0  , 

and is hsted m column 8; but no information is known directly about 
(until off is known) and this is denoted by question marks in column 9. In 
Table II the undetermined values of OAB listed in column 8 are obtained by 
adding each ~AB to the corresponding ~A8 listed respectively in columns 2 
and 3; therefore the most general Petrov type of ~ can be determined and 
is listed in column 8, but no information is known directly about R"b~a (until 

a �9 . . �9 . 0 

K o b~d 1S known) and this is denoted by question marks in column 9. The 
"most eneral" Petrov t es of R" lasted 1 g YP o b~a ' "n column 8 of Table I are the 
only possible types (except 0R"bcd identically zero, when the ~A's and ~A's 
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"cancel"), but almost all of the "most general" Petrov types of ~ff listed 
in column 8 of Table II have nontrivial subtypes; these can be obtained by 
choosing the permitted nontrivial subtypes (where possible) or trivial 
subtypes of P'~bcd and/or ~ or by choosing some of the ~AflS to cancel 

�9 0 ~ , 

corresponding DAB S. 
(g) The choice of tetrad which gives the canonical form for a particular 

Petrov type of K"bca is not of course the same choice of tetrad which puts a 
�9 0 

particular Petrov type of W into canonical form. Therefore, in order to 
decide which nontrivial solutions of P"bcd in Table I are compatible with 
nontrivial solutions of P"b~d in Table II we cannot compare directly the 
undetermined ~A, (~As, and A in column 3 of the two tables, but rather 
compare their invariant Petrov types from the two tables, and from this we 
build up in Table III the complete picture of those classes of K"b~d which 
permit nontrivial solutions of P~bcd. For the same reason, for these classes, 
when we are trying to find information on the Riemann tensor we cannot 
combine directly the results obtained for WA in column 7 of Table I with the 
results obtained for DAB and A in column 7 of Table II--rather, we must 
use the Petrov types to obtain the information in columns 6 and 7 of Table 
III. We demonstrate how we construct Table Ill in the Appendix�9 

(h) The Petrov types of R"bcd and ~ listed in columns 6 and 7 of Table 
0 . 

III are the most general, and m most cases nontrivial subtypes can be 
found, as is clear from the discussion in the Appendix. 

(i) In Table III class O* means types Oal, Oa2, 02. The O~3 type-- 
which is when all ~AB are zero, i.e., K~b = 0--is listed separately since for 

0 a 

this class (with only the scalar A nonzero) K b~d imposes no conditions on 
P"b,~ nor therefore on R"b~d. 

3. SUMMARY OF RESULTS 

We highlight the following results from Table III. 
(i) Only the trivial solution of (6) [equivalently (8) and (9)] is possible 

when either of the following conditions on K"b~a holds: 

(a) K"bca is Petrov type 
(b) Jr is Petrov type L 
(c) K"bca is Petrov type 
(d) K"b~a is Petrov type 

I, II, or IlL 
II, or IlL 
D and 5r is Petrov type N. 
N and ~ is Petrov type D. 

This result was given in Edgar (1990). 
(ii) Nontrivial solutions of (6) only occur when both Kabca and J~ffare 

0 
degenerate Petrov classes (i.e., D, N, or O). However, for some of these cases 
K~bcd may be of rank 6--the maximal rank. This can easily be seen by 
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substituting these classes of Kabcd into the equivalent equation to (5.4) in 
McIntosh and Halford (1982), for K~br 

(iii) When nontrivial solutions of (6) occur the tensor P~b~d, which 
measures the difference between K~b~d and Rabcd, has dimension at most 3. 
Both pabc d and ~ are degenerate Petrov classes [i.e., I(M*), H, D, N, or O]. 

. 0  . . . 

0v) Nontnvlal solutions of (6) only occur when both Rabcd and ~ are 
degenerate Petrov classes [i.e., I(M~), II, D, N, or O]. Fo~ some of these 
c a s e s  Rabcd may be of rank 6--the maximal rank. However, we note that a 
spacetime with a high-ranking Riemann tensor [and o R ~b~d and 9t both Petrov 
type I(M :~)] only permits nontrivial solutions in one very special situation-- 
when both Kabcd and ,~  are type O. 

So it i~ only in very special situations that the Ricci equations are 
insufficient to characterize a Riemann tensor; it is only when the K"bcd and 

0 .  
~ff parts of Kabcd a r e  both degenerate, or alternatively when a spacetlme has 
a Riemann tensor Rabcd which has both Rabcd and ~ parts degenerate. Of 

0 
course in the latter case we are assuming that the curvature candidate Kabcd 
has more structure than just its scalar curvature K, since we already pointed 
out in Section 1 that such a curvature candidate puts no constraint on Rabid. 

4. GENERIC NATURE OF RESULTS 

It has been noted that it is only for spacetimes whose Riemann tensors 
are very specialized that the Ricci equations fail to characterize the Riemann 
tensor. So we would suspect that this statement can formally be made for 
"generic" spacetimes. 

Referring to Rendall (1988a), we find from Proposition 6" 3 that there 
exists an open dense set of C" Lorentz metrics on M with Whitney C r (r > 3) 
topology whose Weyl tensors are Petrov type I at all points of the spacetime 
M, except possibly on a two-dimensional regular submanifold of M, where 
the type is II, and isolated points where it is III or D. 

When we apply this proposition to Table III we can conclude that for 
a generic spacetime, a curvature candidate Kabcd--with at least one of 
Kabcd and X not Petrov type O--which satisfies the Ricci equations is equal 
0 
to a Riemann tensor at all points of M (except perhaps at isolated points.) 

However, we can even strengthen this result by weakening the condition 
on Kabcd. First we need to strengthen Proposition 6:3 by replacing Petrov 
type I with that general subclass of Petrov type I which excludes Petrov type 
I(M~); this subclass, which corresponds to M being complex, will be labeled 
Petrov type l(MC). So we need to construct a slightly finer stratification 
where Petrov type I is subdivided into types I(M*) and l(MC), but the rest 
of the stratification is unchanged. By the same type of argument as used by 
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Rendall (1987) to establish Proposition 6:3 ,  2 we can show that there does 
exist an open dense subset of  C r Lorentz metrics on M whose Weyl tensors 
are Petrov type I(M c) ; o f  course there is the possibility that it can reduce 
to Petrov type I(M ~) on a submanifold. 

Therefore we can conclude that for a generic spacetime, a curvature 
candidate K~b~d---with at least one of  Kabcd and ~ nonzero--which satisfies 

0 
the Ricci equations is equal to a Riemann tensor (except possibily on some 
submanifolds of M). 

APPENDIX 

Kabcd Petrov Type D 
o 

From Table I it follows immediately that Pabcd is type D, ~ is type Da3, 
and A # 0 .  

(a) I f  ~ is type D, then it follows immediately from Table II that 
Pabca is type D, ~ is Type Da3, and • r This result coincides exactly with 

the result given above from Table I. So for this class of  curvature candidate 
Rabcd differs from Kaaca. However, from Table I we also note that R~b~a is 

0 

type D and from Table II, ~ is type D, i.e., for this class of  curvature 
candidate although R ~a~d may differ from Kabcd, it has the same Petrov types, 
and the scalars K and R may differ. 

(b) I f  ~ is type N, then it follows immediately from Table II that 
Pabc d is type N, ~ is type 02 and ,~ = 0. These results can only be reconciled 
0 .  

with those given above from Table I when both P bcd and ~ as well as A 
. . . .  0 , a �9 �9 �9 

are ldenhcally zero, 1.e., for this class of  curvature candidate K a~a is Identical 
to Rabcd. 

(c) I f  JY~ is type O, then it follows immediately from Table II that 
pabc d is type I . . . .  or H , . . . ,  ~ is type L .  �9 �9 or II, . . . ,  and A # 0. There 
0 .  , . 

th wdl be a nontnvlal intersection between e results given above from Table 
I and these results from Table II provided that, in the latter, type D is a 
permitted subtype for Pab~a and type Da3 is a permitted subtype for ~ .  Of 

course the tetrad frame in which Pabc d is given in Table I (the usual canonical 
tetrad frame associated with the different Petrov types of  JY~ given in Table 
II, so a direct comparison between column 3 in each table is not sufficient; 
however, it is easy to deduce that the required subtypes do exist, although 
we cannot immediately obtain their most general form in the tetrad in which 
it- has its canonical form. So when Kabcd is type D and ~ is type O, Rabcd 

0 

differs from gabcd. 

2I a m  grateful to Dr. Rendall for help on this point. 
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From Table I we also note that R abcd is type D and from Table II that 
is type I . . . . .  However, we can be~ precise in our prediction for 

when we make pabcd in Table II compatible with pabc d in Table I. If we 
transform pabc d given in Table I into an arbitrary tetrad frame, the ~A's 
have the form (Ludwig, 1986) 

~0 = 6a2b 2t~ 

qfll = 3ab(ad + bc)r 

~P2 = (a2d 2 + b2c 2 + 4abcd)q2 

q?3 = 3cd(ad + bc)r 

L~4 = 6c2d2~-t 

(A1) 

and the ~As's have the form 

~oo = 4 a b ~  

~oi = 2ab(ad+ bc)O 

~02 = 4abc-d(b 

~l t = ( ad + bc)( ad + bc)O 

~12 = 2cd(ad+ bc)~ 

~22 = 4cd-cd~ 

(A2) 

where both �9 and (b are real, corresponding to the ~2 and (b,,, respectively 
in Table I. Substituting in column 3 of Table II gives the conditions under 
which these are consistent with the form of the undetermined q~A's and ~AB'S 
when geg is type Oa,, Oa2, or 02, respectively. (Of course, when o~ff is type 
Oa3 there is always consistency.) 

When ~ is type Oa, the above equations are found to be consistent 
providing 

ab = ab 

cd= cd 

(ad+ bc) = (ad+ bc) 

2~ = 3~  

(A3) 

The ~As are found by adding the ~As in column 2 of Table II to the ~As 
given in (A2) with the conditions (A3) substituted. The components of the 



Ricci Equations and Riemann Tensor 1 3 3  

Plebanski tensor ~ can now be written out, using Mclntosh et al. (1981), 

I 
Xo = ~ (q%o~o2 - 0 2 0  

= -2a262(~ 2 + ~ 1  i) 

t 
Z1 = ~ (Oooq~12 + ~10~o2 - 2Ool@l l) 

= -ab(ab + cd) (~) 2 + (~(~l J) 

2"2 = ~(~oo~22- 4 ~ ,  + 4",o~,2 - 2~2,r + qbo2~2o) 
( A 4 )  

= -- �89 (a2d 2 + b2c 2 + 4abcd)(alp 2 + q~l~) 

Z3 = �88 (@22~10 + ~12~20 - 2~21r l) 

= -cd(ad+ bc)(6 2 + 6r ]) 
1 

Z 4  = 2 ( ( I )22( I )2o  - -  ( I )21)  

= - 2 c 2 d 2 ( ~ ,  2 + q~,~ ~) 

By comparing these with (A1), it is obvious that ~ is also Petrov type D. 
When a similar analysis is applied to the other two cases--when JX is 

type O~2 and 02, respectively--it is found for these cases also that ~ is 
Petrov type D. 

So for this class of curvature candidate if K"~r and Ro"br differ, they 
are the same type; if ~ and ~ differ, ~ is at most of type D and the scalars 
K and R can differ. 

Therefore we have obtained the first section of Table III. 

K%ca Petrov Type N 
o 

From Table I it follows immediately that P%ca is type N, ~ is type 02 
and A = 0. 

(a) I f  :U is type D, then it follows immediately from Table II that 
P%ca is type D, ~ is type D,3, and/~ 50.  These results can only be reconciled 
~ith those from Table I in the previous paragraph when P%r ~,  and A 

0 . 
are all identically zero, i.e., for this class of curvature cand]date K'bca is 
identical to R%ca. 

(b) I f  ~ is type N, then it follows immediately from Table II that 
P%ca is type N, ~ is type 02, and A = 0. This result coincides exactly with 
the result given above from Table I. So for this class of curvature candidate 
R%,.a differs from K'bca. However, from Table 1 we also note that R%ca is 

0 
type N and from Table II, ~ is type N, i.e., for this class of curvature 
candidate, although R %ca may differ from K%ca, it has the same Petrov types 
and the scalars K and R are equal. 
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(c) I f  ~ is type O, then it follows immediately from Table II that 
P~bcdis type I . . . .  or II, . . . .  ~ is type I . . . .  or II, . . . .  a n d / ~ 0 .  There will 
0 . . . .  

15e a nontrtvlal intersection for P"b~d between the results given from Table I 
at the beginning of this subsection and these results from Table II provided 
that, in the latter, type N is a permitted subtype for P"b~d and type 02 is a 
permitted subtype for ~ when A = 0. It is easy to deduce that the required 
subtypes are permitted--at least when ~r is type O~1, O~3 (trivially), or 02--  
although we cannot immediately obtain their most general form in the tetrad 
in which ~ff has its canonical form. So when K"b~d is type N and ~ is type 

0 
O, R ~ d  differs from KObcd. 

From Table I we note that, for these types, R~ is type N and from 
0 . . 

Table II that ~ is type I . . . . .  However, we can be more precise m our 
prediction for ~ by using Table I and noting that it is obtained from the 
O,4B's which are found by adding ~22 to the type O ~AB'S (which are not of 
course necessarily in canonical form). Such a minor change is easily seen 
[by considering explicitly the tetrad components of the Plebanski tensor 
in (A4)] to ensure that the most general ~ is type N. So for this class of 
curvature candidate if Kabcd and Rabcd differ, they are the same type; if ~ff 

�9 . 0 0 
and ~ differ, ~ is at most of type N and the scalars K and R are equal. 

Therefore we have obtained the middle section of  Table III. 

K'bcd Petrov Type O 
o 

When K~bca is type O, i.e., identically zero, then we can use Table II 
�9 0 �9 . 

directly, combined with the fact that R"bca is identical to PObcd. So we find 
0 �9 0 . 

from Table II that the only nontrivial solutions for P~bcd are when ~ is type 
D, N, or O. This enables us to obtain the last three lines of Table III. We 
have separated out the case when ~(  is type O,3 since for this class both 
K~bcd and K~b are identically zero. 
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